Copied to
clipboard

G = C4×D52order 400 = 24·52

Direct product of C4, D5 and D5

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C4×D52, C204D10, Dic55D10, D10.16D10, (D5×C20)⋊8C2, (C5×C20)⋊5C22, (D5×Dic5)⋊6C2, C523(C22×C4), (C5×C10).7C23, C10.7(C22×D5), Dic52D55C2, C526C42C22, (C5×Dic5)⋊5C22, (D5×C10).12C22, C52(C2×C4×D5), C2.1(C2×D52), (C4×C5⋊D5)⋊7C2, C5⋊D53(C2×C4), (C2×D52).6C2, (C5×D5)⋊3(C2×C4), (C2×C5⋊D5).15C22, SmallGroup(400,169)

Series: Derived Chief Lower central Upper central

C1C52 — C4×D52
C1C5C52C5×C10D5×C10C2×D52 — C4×D52
C52 — C4×D52
C1C4

Generators and relations for C4×D52
 G = < a,b,c,d,e | a4=b5=c2=d5=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 748 in 124 conjugacy classes, 46 normal (12 characteristic)
C1, C2, C2, C4, C4, C22, C5, C5, C2×C4, C23, D5, D5, C10, C10, C22×C4, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C52, C4×D5, C4×D5, C2×Dic5, C2×C20, C22×D5, C5×D5, C5⋊D5, C5×C10, C2×C4×D5, C5×Dic5, C526C4, C5×C20, D52, D5×C10, C2×C5⋊D5, D5×Dic5, Dic52D5, D5×C20, C4×C5⋊D5, C2×D52, C4×D52
Quotients: C1, C2, C4, C22, C2×C4, C23, D5, C22×C4, D10, C4×D5, C22×D5, C2×C4×D5, D52, C2×D52, C4×D52

Smallest permutation representation of C4×D52
On 40 points
Generators in S40
(1 18 8 13)(2 19 9 14)(3 20 10 15)(4 16 6 11)(5 17 7 12)(21 36 26 31)(22 37 27 32)(23 38 28 33)(24 39 29 34)(25 40 30 35)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 21)(2 25)(3 24)(4 23)(5 22)(6 28)(7 27)(8 26)(9 30)(10 29)(11 33)(12 32)(13 31)(14 35)(15 34)(16 38)(17 37)(18 36)(19 40)(20 39)
(1 3 5 2 4)(6 8 10 7 9)(11 13 15 12 14)(16 18 20 17 19)(21 24 22 25 23)(26 29 27 30 28)(31 34 32 35 33)(36 39 37 40 38)
(1 29)(2 30)(3 26)(4 27)(5 28)(6 22)(7 23)(8 24)(9 25)(10 21)(11 37)(12 38)(13 39)(14 40)(15 36)(16 32)(17 33)(18 34)(19 35)(20 31)

G:=sub<Sym(40)| (1,18,8,13)(2,19,9,14)(3,20,10,15)(4,16,6,11)(5,17,7,12)(21,36,26,31)(22,37,27,32)(23,38,28,33)(24,39,29,34)(25,40,30,35), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,21)(2,25)(3,24)(4,23)(5,22)(6,28)(7,27)(8,26)(9,30)(10,29)(11,33)(12,32)(13,31)(14,35)(15,34)(16,38)(17,37)(18,36)(19,40)(20,39), (1,3,5,2,4)(6,8,10,7,9)(11,13,15,12,14)(16,18,20,17,19)(21,24,22,25,23)(26,29,27,30,28)(31,34,32,35,33)(36,39,37,40,38), (1,29)(2,30)(3,26)(4,27)(5,28)(6,22)(7,23)(8,24)(9,25)(10,21)(11,37)(12,38)(13,39)(14,40)(15,36)(16,32)(17,33)(18,34)(19,35)(20,31)>;

G:=Group( (1,18,8,13)(2,19,9,14)(3,20,10,15)(4,16,6,11)(5,17,7,12)(21,36,26,31)(22,37,27,32)(23,38,28,33)(24,39,29,34)(25,40,30,35), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,21)(2,25)(3,24)(4,23)(5,22)(6,28)(7,27)(8,26)(9,30)(10,29)(11,33)(12,32)(13,31)(14,35)(15,34)(16,38)(17,37)(18,36)(19,40)(20,39), (1,3,5,2,4)(6,8,10,7,9)(11,13,15,12,14)(16,18,20,17,19)(21,24,22,25,23)(26,29,27,30,28)(31,34,32,35,33)(36,39,37,40,38), (1,29)(2,30)(3,26)(4,27)(5,28)(6,22)(7,23)(8,24)(9,25)(10,21)(11,37)(12,38)(13,39)(14,40)(15,36)(16,32)(17,33)(18,34)(19,35)(20,31) );

G=PermutationGroup([[(1,18,8,13),(2,19,9,14),(3,20,10,15),(4,16,6,11),(5,17,7,12),(21,36,26,31),(22,37,27,32),(23,38,28,33),(24,39,29,34),(25,40,30,35)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,21),(2,25),(3,24),(4,23),(5,22),(6,28),(7,27),(8,26),(9,30),(10,29),(11,33),(12,32),(13,31),(14,35),(15,34),(16,38),(17,37),(18,36),(19,40),(20,39)], [(1,3,5,2,4),(6,8,10,7,9),(11,13,15,12,14),(16,18,20,17,19),(21,24,22,25,23),(26,29,27,30,28),(31,34,32,35,33),(36,39,37,40,38)], [(1,29),(2,30),(3,26),(4,27),(5,28),(6,22),(7,23),(8,24),(9,25),(10,21),(11,37),(12,38),(13,39),(14,40),(15,36),(16,32),(17,33),(18,34),(19,35),(20,31)]])

64 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H5A5B5C5D5E5F5G5H10A10B10C10D10E10F10G10H10I···10P20A···20H20I···20P20Q···20X
order122222224444444455555555101010101010101010···1020···2020···2020···20
size11555525251155552525222244442222444410···102···24···410···10

64 irreducible representations

dim111111122222444
type++++++++++++
imageC1C2C2C2C2C2C4D5D10D10D10C4×D5D52C2×D52C4×D52
kernelC4×D52D5×Dic5Dic52D5D5×C20C4×C5⋊D5C2×D52D52C4×D5Dic5C20D10D5C4C2C1
# reps1212118444416448

Matrix representation of C4×D52 in GL4(𝔽41) generated by

9000
0900
0010
0001
,
64000
1000
0010
0001
,
64000
353500
0010
0001
,
1000
0100
00640
0010
,
40000
04000
00640
003535
G:=sub<GL(4,GF(41))| [9,0,0,0,0,9,0,0,0,0,1,0,0,0,0,1],[6,1,0,0,40,0,0,0,0,0,1,0,0,0,0,1],[6,35,0,0,40,35,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,6,1,0,0,40,0],[40,0,0,0,0,40,0,0,0,0,6,35,0,0,40,35] >;

C4×D52 in GAP, Magma, Sage, TeX

C_4\times D_5^2
% in TeX

G:=Group("C4xD5^2");
// GroupNames label

G:=SmallGroup(400,169);
// by ID

G=gap.SmallGroup(400,169);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-5,-5,50,970,11525]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^5=c^2=d^5=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽